Question 1.

(Start a new page.)

- a) Find, correct to one decimal place, the value of: $\frac{1.09^2 + 0.89}{1.09^2 0.89}$.
- b) Express $\frac{2}{3}$ of $\frac{1}{4}$ as an exact percentage.
- c) Simplify a-3(a-2).
- Find the coordinates of the vertex of the parabola $y = 2x^2 20x + 53$.
- e) Solve $x^2 3x 28 = 0$.
- f) Evaluate $\log_5 45 + \log_5 40 \log_5 72$.

Question 2.

(Start a new page.)

- a) Two lines l: x + y = 12 and m: 2x y = -3 intersect at the point M.
 - (i) Find the coordinates of M.
 - (ii) Prove that the point A(6,6) lies on the line l.
 - (iii) The line through A parallel to the y-axis intersects the line m at B. Find the coordinates of B.
 - (iv) If lines l and m intersect the y-axis at C(0,12) and D(0,3) respectively, show that the quadrilateral ABCD is a parallelogram. Give reasons.
 - (v) Hence find the area of the triangle AMD.
- b) Find the limiting sum of the geometric series $\frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \frac{1}{24} + \dots$

Question 3.

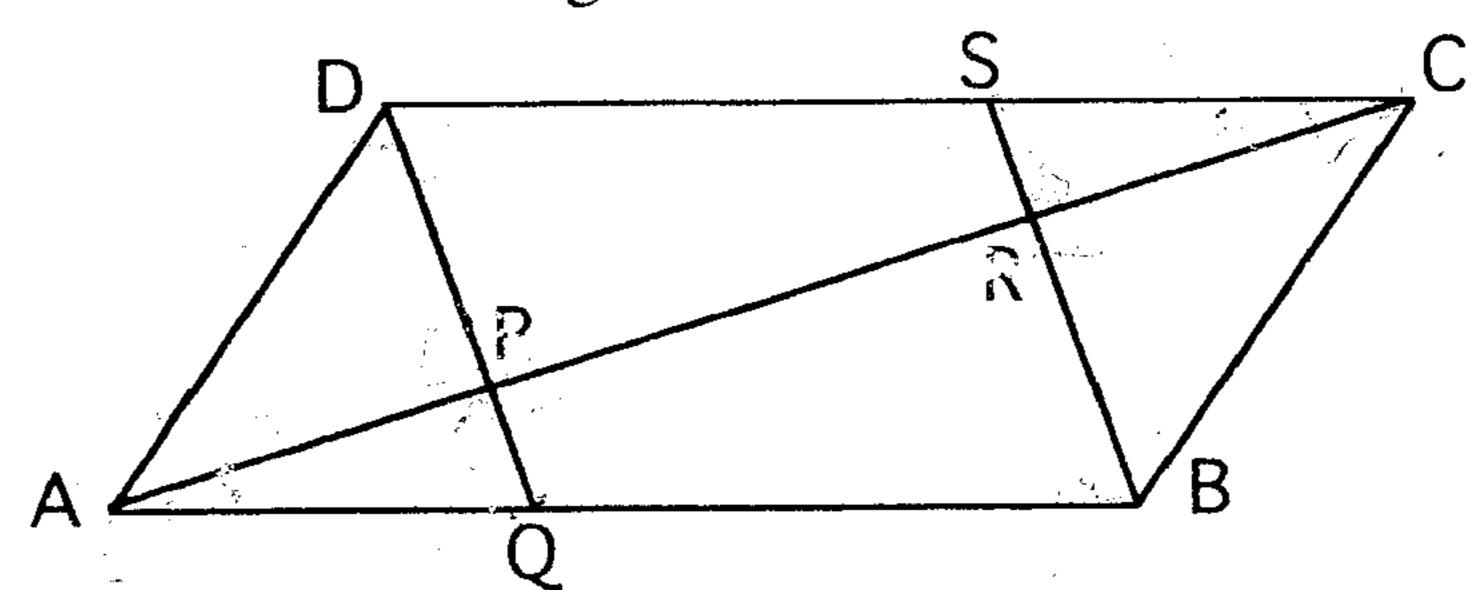
(Start a new page.)

- Differentiate: a)
- (iii) $\frac{\sin x}{x}$. (iii) $(3-4x)^5$.
- Find the equation of the tangent to the curve $y = x \ln x$ b) at the point (1,0).
- Find $\int \sec^2 3x \, dx$.
- Evaluate $\int_{1}^{3} \frac{2x}{x^{2} + 3} dx$

Question 4.

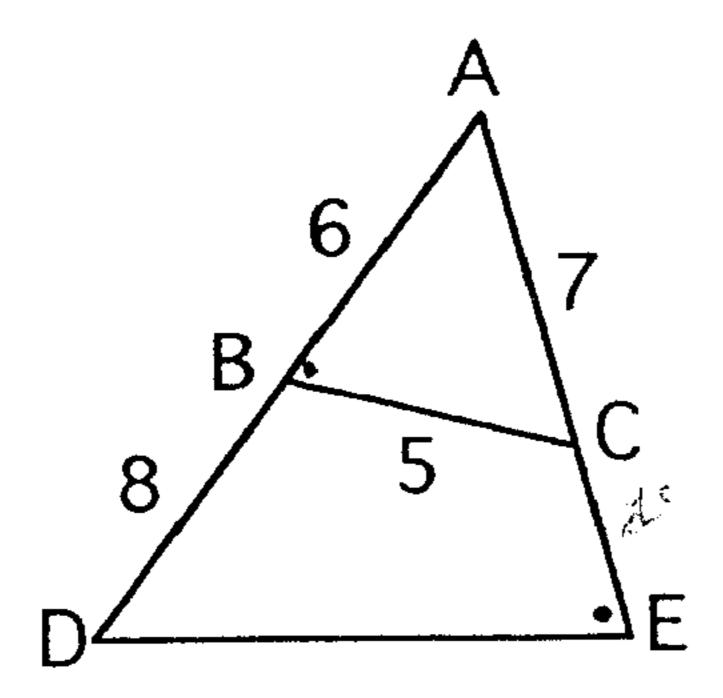
(Start a new page.)

In the parallelogram ABCD, the straight lines DPQ and BRS are **a**) perpendicular to the diagonal AC.



Copy the figure on your answer sheet and prove, giving reasons:

- $DQ \parallel SB$.
- Quadrilateral QBSD is a parallelogram. (ii)
- (iii) SC = AQ.
- In the figure above, if the area of the triangle AQD is 20 cm² and AQ: QB = 2:3 find the area of the parallelogram ABCD.
- In the figure below, not drawn to scale, $\angle ABC = \angle CED$, AB = 6 cm, BD = 8 cm, AC = 7 cm and BC = 5 cm.



- Prove that the triangles ABC and ADE are similar.
- Find the length of CE. Give reasons. (ii)

Question 5.

(Start a new page.)

- a) Two 6 sided, unbiased dice, one red and the other green, are tossed. What is the probability that:
 - (i) The red one is an odd number?
 - (ii) Their sum is 8?
 - (iii) Their sum is 8 given that the red one shows an odd number?
- b) A particle initially at t = t, moves in a straight line. The displacement x metres from the origin at time t seconds is given by $x = t^3 6t^2 + 9t$, $t \ge 0$.
 - (i) Find the velocity of the particle at time t seconds.
 - Hence prove that the particle changes direction twice in the first 4 seconds, and find the positions of the particle at those times.
 - (iii) Sketch the displacement-time graph showing all information obtained so far, for $t \le 4$.
 - (iv) Calculate the average speed over the first 3 seconds.

Question 6.

(Start a new page.)

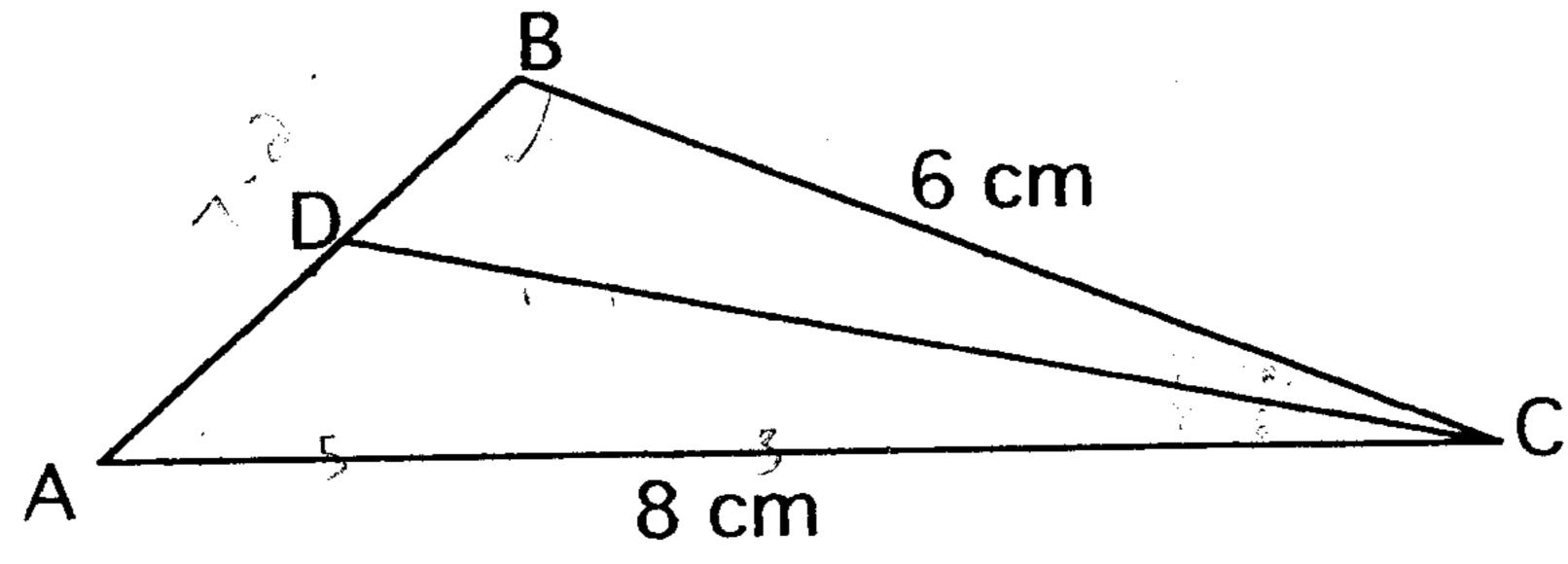
- The number of bacteria, N, in a culture increased from 600 to 1800 in two hours. Assuming that the rate of increase is directly proportional to the number of the bacteria present, $\frac{dN}{dt} = kN$,
 - (i) Show that $N = Ae^{kt}$, where A is a constant, satisfies the equation $\frac{dN}{dt} = kN$.
 - (ii) Find the constant A and then the constant k.
 - (iii) How many hours does it take for the number of bacteria to increase from 1800 to 18000?
- b) (i) Sketch the graph of $y = \sqrt{4 x^2}$.
 - (ii) Hence, find $\int_{-2}^{2} \sqrt{4-x^2} \, dx$.

JAMAS AN IND

Question 7.

(Start a new page.)

- a) A curve y = f(x) has derivative $f'(x) = kx^2 + 2$ and a stationary point at (-1,3).
 - (i) Find k.
 - (ii) Find the function.
- In $\triangle ABC$, not drawn to scale, CD bisects the angle BCA and D lies on side AB. $\angle C = 60^{\circ}$, AC=8 cm and BC=6 cm.



- (i) Calculate the length of AB, giving your answer correct to one decimal place.
- (ii) Calculate the exact area of $\triangle ABC$.
- (iii) Hence, calculate the exact length of CD.

Question 8.

(Start a new page.)

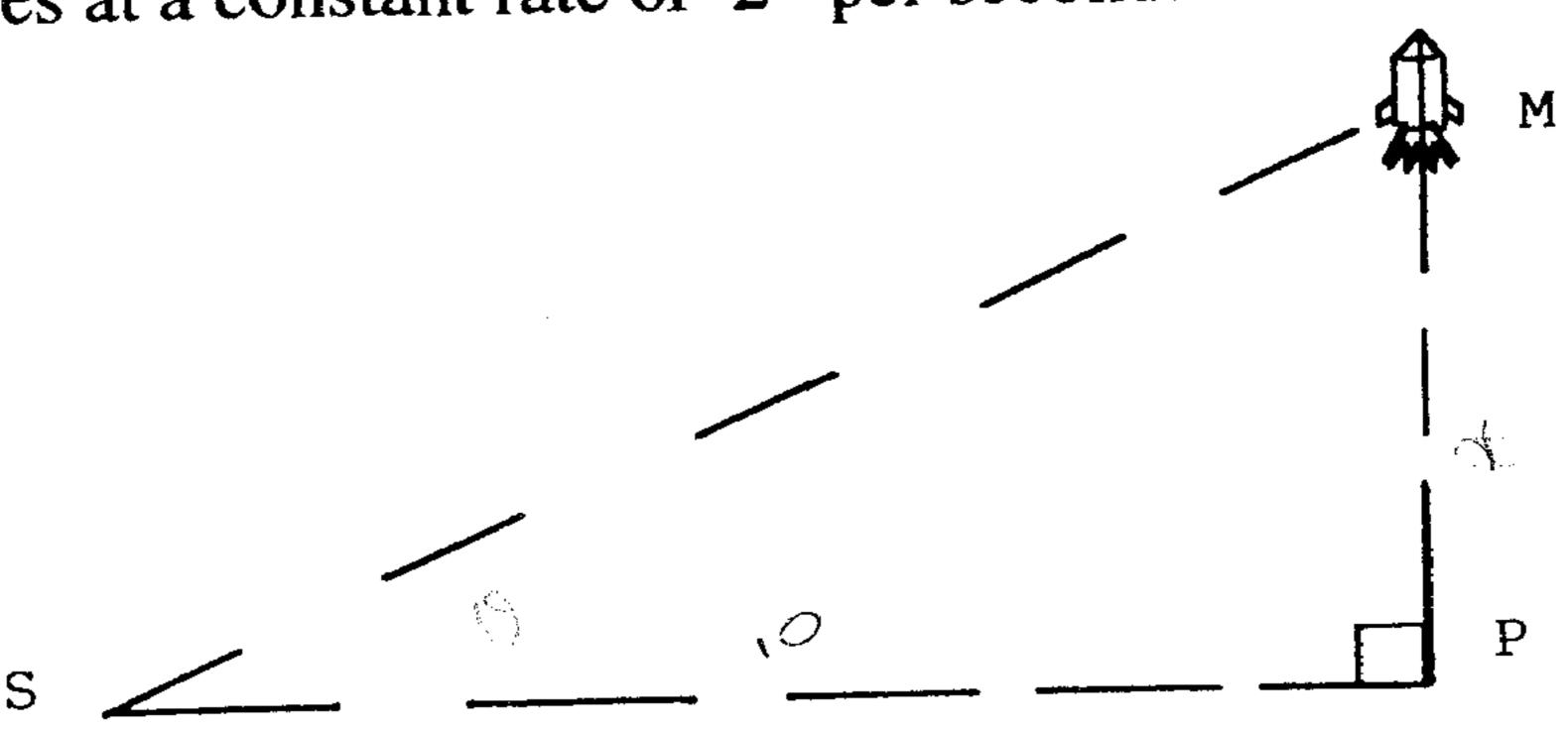
- a) Calculate the area bounded by $y = x^2 5x + 6$ and y = 2x.
- b) Every year, starting on Peter's first birthday, his grandparents gave him \$100 which was deposited in the same bank account at the rate of 8% per annum. On his 21st birthday, instead of the \$100, they gave him a lump sum of \$5,000, deposited in the same account. After this they stopped giving Peter any more money.
 - (i) How much money did Peter have in this account before his 21st birthday?
 - (ii) Peter left all this money in the bank, at the usual rate of 8%, until his 28th birthday when he decided to use it for a new car. How much money did he collect from this account?

Question 9. (Start a new page.)

- a) The area in the first quadrant, under the curve $y = xe^x$, the line x = 2 and the x-axis, is rotated about the x-axis.
 - (i) Write down a definite integral which gives the volume of the generated solid.
 - (ii) Calculate an estimate of the volume of this solid of revolution using Simpson's rule with three function values.
- b) Towns A, B and C are located 6 km west, 6 km east and 10 km south, respectively, of a point D. A road is to run north from C to a point P and from P a branch road is to run to A and another branch road to B. (Assume all roads to be straight lines.)
 - Show that, the total length L of road PA + PB + PC is given by $L = x + 2\sqrt{x^2 20x + 136}$, where x is the length of the road from C to P.
 - Show that the minimum total length for the three roads, PA + PB + PC, is $(10 + 6\sqrt{3})km$.

Question 10. (Start a new page.)

- a) Given the quadratic equation $x^2 3x + k = 0$,
 - (i) Find the value of k for which the equation has two equal roots.
 - Find the value of k for which one of the roots exceeds the other root by two.
- For the first 20 seconds of flight its angle of elevation θ changes at a constant rate of 2° per second.



- (i) Find θ as a function of t (in the first 20 seconds).
- (ii) Hence express the distance x travelled by the missile, as a function of t.
- (iii) Find the velocity of the missile when the angle of elevation is 30° , giving your answer in km/hr.

Q10) 7.0 b) 162/3% c)-2016 $d_{1}(5,3)$ c) x=7 or -4 f) 2 Q2ain m(3,9) in L.H.S. = 6+6=12=R.H.S. 1 111) B(6,15) iv) ABCD is a parm. (one pair of opposite, equal and parallel) 13,300425 b> 5_ = 1/3 Q3000 2x ii) $\frac{2 \cos x - 5 \sin 2c}{x^2}$ $\frac{10}{10} - 20 (3 - 4 = x)$ b) m=1, y=x-1c) 1/3 tan 300 + C-2>1~3

Q4.a) i) DQ ||5B (one pair of alternate bi) Ab=7.2cm "> ORBSD is a prim (2 parcs of opposte)

Sides primilled):

"> OC = 2453 11) 5 C = PQ

TRIAL MIN es is equiangular test 11) CE = 5cm Q5:3 2 11) 5/36 $\frac{1}{18} = \frac{1}{9}$ b) x=t3-6t2+9t $= t \left(k - 3 \right)^{2}$ ">v=362-12t+9 in (=1 , =3 $\frac{1}{100} = \frac{8}{3} = \frac{8}{3} = \frac{1}{3} = \frac{$ Q6.00) The AKE ii) A = 600, $K = \frac{1-3}{2}$ in) L= 6.2hours - 2 = 4hrs 10mins 1) 2T units

XX19) x=1, x=6 A = 205/2 with 5 b) = 494-2 11) = 9,942.29 Worth = \$17039 (29 a))V= JTx2e 2xdx 100 2360 with 3 b) 1) PA = x + 25x2-20x+136 11) mm. TP. At x=10-253 abs. min = 10-253 + 453+453 Q10.01) K= 9/4 i) P= \(\frac{1}{2} \pm 2\) b) is 0 =(2t) "> x = 10 + an (2t) x = 10 tan (Tot)11) V = 10 × T × Sec (Tot) = 4T Km/S = 1600TT km/h